
Computational Life Science
Data science for a better future – the exploration of complex biological systems
Computational Life Science is an interdisciplinary field that combines knowledge of computer science, statistics, genetics, medicine, chemistry, agriculture and other related fields. Using data-driven AI approaches, biometric data can be systematically and precisely analyzed and identified.
Through data comparison, damage patterns can be identified at an early stage. More serious consequential damage to the respective biosystem can thus be prevented at an early stage. The Supper & Supper BIO team has extensive professional experience in hospitals and various biological institutions and organizations. We deliver customized AI and Machine Learning solutions.
In the analysis of biometrics, we combine classical statistical methods with our innovative machine learning models. Our procedures aim to identify hidden factors that improve the effectiveness of a product or minimize potential risks and dangers. Possible areas of application are:
- Early detection of cancer using X-rays
- Optimization of the pesticide effect in botan
- Trial planning for clinical studies and field trials
- Analysis of the interaction between genes and the environment
Supper & Supper’s BIO Data Science team can provide data-driven AI solutions to companies in virtually all bio-related industries. Our processes, techniques and products offer particularly great potential for:
+ Clinics and hospitals
+ Pharmaceutical industry
+ Plant protection companies
+ Research institute in the biological field
+ Seed companies
+ Companies in the field of medicine and biotechnology
Supper&Supper supports us in improving the decision-making processes of the crop protection pipeline by means of data science. Supper&Supper proposes cutting edge data science methods tailored to our business needs, often exceeding our expectations. Their passion and engagement in the project are outstanding, thus creating an extremely positive collaborative atmosphere.
Dr. Erica Manesso
Lab head of Biostatistics, Crop Science division, R&D


Biostatistics, machine learning and data science are indispensable for the development of a modern, data-based agriculture. The S&S team supports this process with competent consulting, implementation of MVPs as well as holistic analyses from data preparation to the generation of value-adding insights.
Dr. Julian Heinrich
Senior Data Scientist at Bayer Crop Science

The implementation by Supper & Supper delivered the full scope of Minimum Viable Products on time and within budget. This new Syngenta product meets, in the simplest way, complex business requirements for a large number of departments in the Syngenta R & D organization.
Lee Hubbard – PhD, PMP, MSP, RMCP
Syngenta R & D | 3PM Expert Systems Excellence | Business Lead for PPM Systems Development for the Portfolio Management Program


Success Stories
S&S supports us in the preparation, modelling and visualization of complex data in field trial analysis. In doing so, in-depth knowledge in classical biostatistics plays just as an important role as modern machine learning methods, programming environments such as R/Shiny or the handling of Neo4j graph databases. With the help of S&S, holistic analysis tools could be developed and interfaces to users could be created, whereby the time from an idea to the analysis results was significantly reduced.
Dr. Julian Heinrich

Supper & Supper functions as an extended workbench for the Data Labs of internationally operating research and development organizations. We can fully integrate into existing teams and structures and implement projects autonomously or in collaboration with internal data science departments. We help our clients to increase their productivity, save time and make technological progress.
Learn more about concrete usage potentials
of Computational Life Science in our Use Cases