Random forest approach performed with an accuracy of 99,7 % and of 99,3% respectively.
Using random forest method we obtained the importance of used variables of both data sets. For the first data set the means of the three largest values were critical for making predictions. It was notable that mitosis stage of the second date set played no role for the prediction.
Logistic regression approach performed with an accuracy of 99.6% in both cases. The confusion matrices based on the optimized F1-score were stored. The false prediction of benign tumor instead of malignant was penalized higher.
The threshold of the confusion matrices corresponded to the number beyond which the prediction was considered positive , the values were set to 0.475 and 0.25.